

Methods	of Investigation for	
×		TECHNING ADDITY
Туре	Methods	Objective
Drilling	Soil boring; diamond core drilling	Overburden, and rock cores
Surface	Seismic refraction/reflection; electric	Main geological structures;
geophysical	resistivity tomography	overburden depth
surveys		
Borehole surveys	Borehole logging; seismic logging;	Ground temperature; Seismic
and testing	borehole camera acoustic imaging;	velocities; joints; and
	impression packer; borehole radar;	permeability; geological
	Lugeon tests; rising head/falling head	structures
	tests; cross-hole tomography	1
Laboratory tests	Point load; uniaxial/triaxial compression;	Mechanical properties of intact
	Brazil tensile; 3-point flexural	rock and rock joints
<i>In situ</i> stress	Hydraulic fracturing; 3-D overcoring	Hydraulic fracturing; 3-D
		overcoring (during construction)
		13

Intact Rock Properties

Properties	Range	Average
Density (g/cm ³)	2.62 ~ 2.67	2.65
Uniaxial compressive strength (MPa)	108.09 ~ 224.89	163.83
Young's modulus (GPa)	37.10 ~ 111.25	65.87
Poisson's ratio	0.14 ~ 0.35	0.24
Cohesion (MPa)	//	24.51
Internal friction angle (°)		59.02
Point load index	5.6 ~ 16.1	8.7
Brazil tensile strength (MPa)	8.46 ~ 14.30	11.71
Three-point tensile strength (MPa)	13.25 ~ 27.30	19.94

DSTA

	Weathered Trenches						
_	VV cathered Trenches De						
	Trench	Strike	Extent, m	Depth, m	Weathering Grade		
	T1	SN to NE30o	750	39	11, 111		
	T2	NNW to NE30	950	80	II, III, IV		
	Т3	NE25	900	47	11, 111		
C)efence	e Scienc	e & Tec	hnolog	28		

	Geometries of Rock Joints						
	Joint Set	Video logging	Impressio n packer	Acoustic imaging	Borehole radar	Qry wall mapping	
	Sub- vertical	310/70		278/70	233/74	239/80	
			311/77	308/71	110/79	9/83	
					68/79	178/83	
	Sub- horizontal	98/6		0/0		23/10	
						181/11	
-	Medium dip angle		115/37		282/65		
			292/55				
)efenc	e Sciel	nce &	Techno	ology /	31	

Rock Joint Properties				
Joint conditions	Friction Angle,	Cohesion, C (Kpa)		
Freshly fractured and dry	45.6	258		
Freshly fractured and saturated	42.6	172		
Freshly fractured and dry (weathered rock)	36.8	183		
Natural and dry	36.5	266		
Natural and saturated	33.4	108		
Mineral filled and dry	32.5	71		
Mineral filled and saturated	27.3	52		
Weathered and dry	27.6	200		
Weathered and saturated	20.1	136		

P	Permeability	DSTA					
	Soil	$10^{-05} - 10^{-06} \text{ cm/s}$					
1	Heavily weathered rock	10 ⁻⁰⁶ cm/s					
	Jointed rock mass	$10^{-08} - 10^{-09} \text{ cm/s}$					
>> No major water inflow expected during construction							
De		echnology Ac 2 34					

In Situ Stress					
Test Method	Hydraulic Fracturing		3-D Overcoring		
	Stress, Mpa	Orientat ion	Stress, Mpa	Orienta tion	
Vertical stress	2.25		3.0		
Maximum horizontal stress	7.3	13º	8.2	67 º	
Minimum horizontal stress	4.56	103 <i>°</i>	3.4	157 º	
Horizontal stress r	atio: σ _v : σ	$_{hmin}$: $\sigma_{hmax} =$	1:2:3	36	

	Rock Mass Cla	DSTA Perference Services of					
	Q Value	Rock Mass Quality	Percent, %				
-	0.01 – 0.1	Extremely poor	1.9				
	0.1 – 1.0	Very Poor	3.7				
	1 – 4	Poor	5.8				
20	4 – 10	Fair	13.6				
	10 – 40	Good	51.8				
	40 – 100	Very Good	19.3				
	> 100	Extremely Good	3.8				
D	efence Scien	ce & Technolo					

Typical Tunnel Dimensions						
			1			
Tunnel	Type I	Type II	Туре			
Parameters			III			
Width, m	10	15	30			
Wall height, m	4.5	6.5	8.5			
Crown height, m	8.1	11.2	13.5			
Area, m^2	62	115	275			
			-			
			45			

Blasting Vibrations

$$V = H\left(\frac{R}{Q^B}\right)^{-n}$$
H = constant; B = scaling law;
n = attenuation coefficient
Bukit Timah Granite Test:

$$V = 1099\left(\frac{R}{Q^{1/3}}\right)^{-1.44}$$

Country	PPV (mm/s)	Remarks
Norway/Sweden	18-70	Specifically stated for vertical PPV for different geological media. Corrections are made for other factors.
USA	50	Mostly based on US Bureau of Mines studies relating to surface mines
UK	50	
Switzerland	30	

Material	Building Type	PPV (mm/s)	Remarks
Light concrete Old concrete	Residential Industrial	110 254	Structures expected to crack at 5-18 cm/s
Concrete with masonry foundations	Industrial	150-250	Initial concrete block cracks
Concrete	Industrial	300	Tests showing lowest level corresponding to cracking
Native stone with mortar joints & rubble foundation	1 1/2-storey residential	180-510	Subjected to progressively more intense blast vibrations until damage was observed.
Walls	Residential	12.7	Door slams, Converted from strain
Walls	Residential	22.4	Pounding nails. Converted from strain.
mortar joints & rubble foundation Walls Walls	residential Residential Residential	12.7 22.4	blast vibrations until damage was observed. Door slams, Converted from strain Pounding nails. Converted from strain.

Effe	ects of Shotcrete		DS	STASER.O				
	Table 1. Deformations at the rock surface according to Stille et al. (1989), analysis of results from the Kielder experimental tunnel, showing the influence of Young's modulus of shotcrete.							
	Type of Grouting (if any)	Measured	Calculated	1				
	Unsupported rock	8 mm	8.1 mm					
	Grouted rock bolt section Optimal action of the end plate Local deformation under the end plate	45 mm	4.6 mm 6.1 mm					
	Grouted rock bolt and shotcrete section Young's modulus applied to shotcrete, 20 GPa Optimal action of the end plate Local deformations under the end plate Young's modulus applied to shotcrete, 2 GPa Optimal action, end plate Local deformations under the end plate	23 mm	1.1 mm 1.1 mm 2.6 mm 2.7 mm					
Source: TUST Vol 7, No 4, 1992 63								

Typical Rock Support							
Different Steppert							
	Class	Q	Type I	Type II	Type III		
	Α	>40	Spot	Spot	Spot		
			40 mm	40 mm	40 mm		
1	В	10-40	L3(2.4)	L4(2.4)	L5(2.4)		
			40 mm	40 mm	50 mm		
	С	4-10	L3(2.2)	L4(2.2)	L5(2.2)		
			40 mm	40 mm	50 mm		
	D	1-4	L3(1.9)	L4(1.9)	L5(1.9)		
			50 mm	50 mm	75 mm		
	E	< 1	L3(1.5)	L4(1.5)	L5(1.5)		
			75 mm	75 mm	100 mm		
Note: $L_3(2.4) = rock$ bolt length of 3 m at 2.4m center-to-center spacing 64							

Comparison with Gjovik Stadium							
in Norway (after Broch et al. 1996)							
Rock Conditions & Bolt	GjØvik Stadium, Norway	Singapore Site					
Parameters	(Based on Broch at el. 1996)						
Typical Rock Mass Quality	1 - 30	4 - 36					
Vertical Stress, MPa	1	2-3					
Max Horizontal Stress	3.5	8.2					
Minimum Horizontal Stress	2	4.6					
Ratio of Hori. to Vertical Stress	2-3.5	2-3					
Tunnel/cavern span, meters	61	10 - 30					
Type of Rock Bolts	Fully grouted rebars	Fully grouted CT-bolts					
Lengths, meters	6 m (with alternating 12-m	3-6 m					
	long cables						
Spacing, meters	2.5 m x 2.5 m	1.5 - 2.4					
Bolt Capacity, KN	220	250					
Minimum Measured Loads, KN	1 - 1.5	3 - 12					
Typical Measured Loads, KN	30 - 60	20-60					
Typical Load Percentage	13 – 27%	8-24%					
Maximum Measured Load, KN	87	70					
Max Load Percentage	40%	28%					
Defence Science	e & lechnolo	89					

