Geology of Singapore

Geotechnical Engineering Appreciation Course (Jointly organised by IES Academy and GeoSS)

Dr Cai Jun Gang Tritech Consultants Pte Ltd

July 2012

Topics

- 1. Some Concepts in Geology & Significance of Geology in Civil Engineering
- 2. Recent Geological & Deep Rock Investigations
- 3. Singapore & Adjacent Geology
- 4. Geological Setting of Singapore
- 5. Features of Singapore's Geological Formations
- 6. Description of Singapore's Rocks & Soils for Civil Engineering Practice in Singapore
- 7. Weathering Classification of Singapore's Rocks for Civil Engineering Practice in Singapore
- 8. Updated Geological Maps & Report 2nd Edition, DSTA (2009)

Some Concepts in Geology

Some Concepts in Geology

- **Earth** is an active planet in a constant state of change.
- **Earth movements** are vital to the cycles. Without them the land would be eroded down to just below sea level.
- **Plate tectonics** provide the mechanisms for all earth movements. The hot interior of the earth is the ultimate energy engine driving all geologic processes.

- **Geologic processes** modify the earth's surface, destroy old rocks, create new rocks, and add complexity to ground conditions.
- **Geologic times** are in millions of years. The earth is 4,500 million years old.
- **Most rocks** encountered by civil engineers are 10 500 million years old. They have often been deformed, faulted, weathered, and eroded over many millions of years.
- Most surface landforms visible today have been carved out by erosion within the last few million years.

- **Sediments** from rock destruction, weathering, and decomposition
- **Rivers** major highways transporting new sediments
- **Seabed** where much new sediments are deposited
- Earth's crust where rocks are created and deformed.

Cyclic Geological Processes

Significance of Geology in Civil Engineering

- Civil engineering works all carried out ON (building foundation) or IN (excavation & tunneling) the ground.
- Interaction between Ground and Civil Works Geological formations, geological structures, strength of rocks and soils, and deformation/displacement of rocks and soils may result in Stable or Unstable Ground.
- Site Investigation where civil engineers encounter geology and get to interpret ground conditions often from minimal evidence.
- Unforeseen geologic conditions can still occur as ground geology can be almost infinitely variable. They are often unforeseen due to Inadequate Site Investigation.
- **Civil engineering design** shall accommodate geologic conditions which are correctly assessed and understood as the best geological knowledge obtained in site investigation.

Geology presents uncertainties and complexities which continually pose challenges to civil engineers. Geologic risk is the first risk faced by civil engineers

Recent Geological & Deep Rock Investigations

Recent Deep Rock Investigations (20 Years)

- 1. Geologic Investigations for Rock Cavern Construction in the Bukit Timah Granite (Econ), Sponsored by NSTB, Studied By NTU, 1990-1994
- 2. Site Characterization of Bukit Timah Granite for Rock Cavern Construction (Econ), Funded by LEO (DSTA) of MINDEF, Studied by NTU and Singapore Technologies Construction (Pte) Ltd, 1995-1997
- 3. An Investigation of Hot Spring at Sembawang, Funded by Faser and Neave (Singapore), Studied By Zhao Jian and Chen CN, 1994
- 4. Geologic Investigations for Rock Cavern Construction in the Jurong Formation (S&F), Sponsored by NSTB, Studied By NTU & PWD, 1995-1999
- 5. Geologic Investigations for Underground Science City at Kent Ridge (S&F), Sponsored by NSTB, Studied By NTU & PWD & JTC, 1997-2000
- 6. Geologic Investigations for Underground Oil/Gas Storage Rock Caverns at Jurong Island (Tritech), Sponsored by NSTB, Studied By NTU, 2000-2002
- 7. Geologic Investigations for Proposed Development of Hydrocarbon Caverns Storage in Jurong Island (Tritech) - Phase II-Feasibility Study, Funded ed by JTC, Studied by NTU & Geostock, 2003-2006
- 8. Complementary Geologic Investigations at Banyan Basin for Development of Hydrocarbon Caverns in Jurong Island (Tritech), Flex I and Flex II Study, Jurong Island, Geostock/JCPL, 2006 -2007
- 9. Geologic Investigations at West of Jurong island (Tritech), Funded by JTC, Studied by Tritech, 2008.
- 10. Geologic investigation at Kent Ridge for USC Detailed Feasibility Study (S&F), funded by JTC.
- 11. Geologic investigation at Jurong Hill for Feasibility Study for Underground Warehouse Development.
- 12. Other recent geologic findings in building & infrastructure construction projects, i.e. tunneling & excavation of new MRT Lines.
- 13. A deep geological exploration to cover west and north-east areas is going on by the Geologic Office of BCA.

Layout of Recent Rock Investigations with Seismic Exploration and Deep Boreholes

Geology of Singapore and Layout of Major Site Investigations

Singapore & Adjacent Geology

Singapore & Adjacent Geology

Background

Our geology is closely related to that of Peninsular Malaysia.

Johor has rocks identical to our gabbroic and noritic rocks of the Gombak Norite; our granitic rocks of the Bukit Timah Granite; our sedimentary rocks of the Palaeozoic Volcanics, Sajahat Formation, and Jurong Formation; and our thick deposit of sand and gravel of the Old Alluvium.

Geological Setting of Singapore

Geologic Setting of Singapore

GEOLOGICAL MAP OF SINGAPORE

Singapore's natural deposits are classified under 10 geological formations. In decreasing age, they are outlined with their characteristic rock or sediment types.

- 1. Sajahat Formation: quartzite, argillite
- 2. Gombak norite: norite and gabbro
- 3. Palaeozoic Volcanics: tuff
- 4. Bukit Timah Granite: granite

5. Jurong Formation: reddish mudstone, grey fossil-rich mudstone and shale, fossil-rich limestone, siltstone, sandstone, conglomerate

- 6. Fort Canning Boulder Bed: hard red and white sandy silty clay containing many sandstone boulders
- 7. Old Alluvium: dense muddy sand/gravel
- 8. Huat Choe Formation: firm white kaolin clay
- 9. Tekong Formation: loose pebbly sand
- 10. Kallang Formation: soft grey clay, loose brownish muddy sand, loose light grey to white sand, peaty clay.

Geologic Setting of Major Formations

	Formation	Age	Material	Distribution	
	Bedrock formations				
	Sajahat Formation	Early Palaeozoic (540 – 445 my)	quartzite, argillite	P. Tekong, P. Sajahat, Punggol	
	Gombak Norite	Early Palaeozoic (540 – 445 my)	Norite, gabbro	Bt. Gombak, Bt. Panjang, and adjacent hills	
	Bukit Timah Granite	Early to Middle Triassic (250 – 235 my)	granite, granodiorite, adamellite, diorite	central Singapore Island	
	Jurong Formation	Late Triassic to Early Jurassic (235 – 175 my)	red purplish mudstone and sandstone, grey fossil-rich mudstone and shale, siltstone, conglomerate, fossil-rich limestone	west and southwest Singapore Island and southern islands	
	Weak rock/Soil formations				
	Fort Canning Boulder Bed	Late Cretaceous (100 – 65 my)	hard, often red and white, unstratified sandy silty clay containing many big lens-shaped to rounded fresh sandstone	central business district	
	Old Alluvium	Late Tertiary to Middle Pleistocene (5 – 0.5 my)	dense to cemented muddy sand/gravel with beds of silt and/or clay	east Singapore	
	Kallang Formation	Late Pleistocene to Present (0.14 – 0 my)	soft marine clay, loose alluvial muddy sand, loose beach sand, soft peaty and organic mud, and coral.	all river valleys and mouths	

From Old to Young

Major Fault Structures

Acid magma from great depths rose during the Late Palaeozoic (360 – 250 my)

Uplift of the Main Range Granite and the Bukit Timah Granite created a shallow basin for the deposition of the Jurong Formation during Early Triassic to Early Jurassic (235 – 175 my)

After Early Jurassic (175 my), uplift was minimal and much of the land mass was above sea level and marine sedimentation ceased. Alluvial sediments of the Old Alluvium were deposited in a deep faulted trough during Late Tertiary to Middle Pleistocene (5 to 0.5 my)

Representing the youngest natural deposits, the high-level beach sand of the Tekong Formation were deposited about 5000 to 6000 year ago in Holocene times and the marine clay, coral sand, beach sand, alluvial muddy sand, and peaty clay of the Kallang Formation continues to be deposited in present times since the Late Pleistocene (140,000 years to Present).

Simplified Singapore Geological Section

from Tuas (West) to Changi (East)

Topographic Feature - Hilly Areas in Relation to Singapore Rocks

There are about 25 hilly areas with elevation above 40m in the Bukit Timah area. All abandoned and operating quarries are located on one of the 25 hilly areas.

There are 15 hilly areas with elevation above 40m in the Jurong area.

The advantages of constructing caverns at these hilly areas include:

- The hilly areas usually have shallow overburdens, shallow bedrock depths, and good quality rock mass.
- Only horizontal tunnel access or inclined tunnel access are required, resulting in a much lower construction cost

Geographic feature - Hilly Areas in Relation to Singapore Rocks

Features of Singapore's Geological Formations

General

- Rocks: predominantly granite; less common are granodiorite, adamellite, and diorite
- Mineralogy: quartz (30%), feldspar (60-65%), biotite, and hornblende (less than 10%)
- Texture: medium to coarse grained, light grey but sometimes pinkish
- Age: Early to Middle Triassic (250 235 my)

Typical Outcrops of Bukit Timah Granite

Distribution

It underlies about a third of Singapore Island and the whole of P. Ubin.

It is recognised as the base rock as it underlies all other formations.

It was originally formed from a large body of acidic magma which intruded from great depths into the Gombak Norite and other older formations such as the Sajahat Formation and Palaeozoic Volcanics. The older rocks were eventually removed by erosion and the Bukit Timah Granite is exposed.

Weathering and Bedrock Profile

- Weathering: very extensive through mineral decomposition; depth varies from a few to 80 m with a commonly occurring depth about 25 m.
- Profile: tropical humid soil profile is characteristic; an undulating rock surface with a sharp change from residual soil to granite is usually observed; large boulders are sometimes present.

Strength and Modulus

- Compressive: very high; fresh material has average UCS of 160 MPa with the highest value in excess of over 300 MPa; weathered materials have much lower strength
- Modulus: average of 70 GPa.
- Tensile: about a tenth of UCS values
- Criterion: Mohr-Coulomb at low stress level; best with Hoek-Brown criterion (mi = 30 33).

Jointing and Rock Mass

- Jointing: 4 to 5 joint sets; dominant one is subvertical with a NNW-SSE strike
- Joint Surface: usually rough and little weathered
- Shear Strength: shear friction angle varying with smooth joints having angles of about 30 degrees and rough joints up to 70 degrees
- Rock Mass: usually good and above-good quality

Groundwater and Stress

- Permeability: very low within the range of 10⁻⁷ to 10⁻⁹ m/s,; As the granite rock mass is quite impermeable, groundwater flow is only likely in fractured zones and faults
- Springs: large groundwater flow and springs can be found in fault zones (e.g., Sembawang hot spring)

In-situ

Stresses: high in-situ horizontal stress (about 2 - 3 times vertical stress) in a NNE-SSW direction

Jurong Formation

- Distribution: western and southwestern Singapore Island and the southern islands.
- Age: Late Triassic to Early Jurassic (235 175 my)

Development: sediments from weathered material of older rocks were deposited in a shallow marine basin formed between Bukit Timah Granite and the Main Range Granite and later lithified into rocks. Through lateral basin compression, they were uplifted, folded, faulted, and metamorphosed.

St.J	St. John Facies	Late stage delta top clastics and fore delta turbites
AC	Ayer Chawan Facies	Coarse to fine clasic delta deposits, associated with pulsatory uplift
R/J	Rimau/Jong Facies	Coarse clastic delta/fanglomerates, associated with active uplift
PL	Pandan Limestone	Stable basin, calcareous deposit
Q	Queenstown Facies	Stable basin, calcareous siltstone/mudstone deposits

Basin formation of the Jurong Formation (after Redding et al, 1999)

TriTech

Basin uplifting of the Jurong Formation (after Redding et al, 1999)

Jurong Formation

Geological Structure and In-Situ Stresses

- Bedding: many beds are thin with some reaching a few metres in thickness. Weak and strong beds are often interbedded.
- Folding: many folds trend NWW SEE.
- In-situ
- Stresses: horizontal stress in NNE-SSW is 2.4 2.8 times the vertical stress in some strong rocks. Folding and high horizontal stresses are related to regional tectonic movements.

strongly cleaved and sheared facies of the Jurong Formation

poorly lithified f. to md. muddy sandstone minor conglomerate and gritty sandstone

pale grey cross-bedded f. sandstone and mudstone minor thin coal seams (yielded Jurassic fossils)

polymictic conglomerate and cross-bedded usually c. sandstone

grey fossiliferous limestone with solution cavities minor marble and dolomite

dark grey fossiliferous tuffaceous mudstone and f. to md. tuffaceous sandstone minor spilite, chert, tuff, and volcanic

roundstone polymictic conglomerate and c. sandstone

minor gritty sandstone, black shale, tuff, spilite, and chert

reddish purplish mudstone and f. sandstone minor shale, conglomerate, and tuff PWD (1976), DSTA (2009)

JURONG FORMATION STRATIGRAPHY

dark green rhyodacitic tuff, minor andesite and agglomerate

Lithological Facies

Queenstown:	red to purple mudstone and sandstone
Jong:	roundstone conglomerate and sandstone
Ayer Chawan:	dark grey fossil-rich mudstone, fossil-rich shale, muddy sandstone, and tuff
Pandan:	grey fossil limestone
Rimau:	conglomerate and sandstone
St. John:	siltstone and fine muddy sandstone
Tengah:	muddy sandstone with some conglomerate
Volcanic rocks su	uch as tuff and spilite were added to the Jurong Formation during volcanic activity.

Pandan Facies

Besides the Pandan area, limestone is also found at Pasir Panjang, Seraya, the Banyan Basin in Jurong Island, Tuas, and many other areas in Jurong.

The limestone facies has been named the Pandan Facies because cores of fossil-rich limestone recovered from Pandan Road are the first cores to be described in detail.

The limestone from some areas has been partially metamorphised to marble.

Interbedded conglomerates and sandstone at Labrador

Interbedded sandstone and fissile shale at Tuas

Conglomerate from Kent Ridge (BH 11)

Conglomerate and sandstone from NTU

Sandstone from Kent Ridge (BH 11)

Siltstone from Kent Ridge (BH 2)

Siltstone from Jurong Island

Tuff from Kent Ridge (BH 13)

Marble in contact with siltstone from Kent Ridge (BH 7)

Limestone with cavities from Kent Ridge

Metamorphism

The Jurong Formation had been subjected to lowgrade metamorphism.

The Pandan Facies were affected more than the other facies.

The evidence for metamorphism includes:

- wide-spread occurrences of cleavage, foliation, and recrystallization
- presence of metamorphic minerals such as chlorite, sericite, and micas
- occurrence of metamorphic rocks such as slates, phyllite, and marble

Shale with cleavages from Mount Faber

Rock Properties and Quality

- Strength: most rocks are weak.
- Quality: rock mass quality is usually fair to poor due to extensive fracturing and low strength of the rocks.
- Variation: rock properties and rock mass quality can vary rapidly due to folding.
- Permeability: intermediate permeability within the range from 10⁻⁶ to 2x10⁻⁸ m/s due to frequent fractures.

Weathering

- deep due to humid tropical climate
- thickness of residual soil and weathed zone ranges from a few to 80 m with an average thickness of 35 m.
- karstic features such as solution cavities may be present in the limestone.

Groundwater

- The groundwater table is located between 5 and 20 m below ground surface.
- It is usually present in the zone of residual soil or completely weathered rock

Bukit Timah Granite versus Jurong Formation

Properties	Bukit Timah Granite	Jurong Formation
Distribution	Sedmentary Parts	Bodinersty Notes Licure of ensuing Higher Control of the Control o
Strength of Rock	high strength (160 MPa)	low strength (10-160MPa)
Material	excellent medium for hosting cavern space	still a good medium hosting cavern space
Thickness of Overburden	usually around 20 m	usually around 25m
Thickness of Weathered Zone	usually around 5 m	usually around 10 m
Permeability	low (usually 10 ^{-7~-9} m/sec)	relatively high (usually 10 ⁻⁶ ⁸ m/sec)
	strong inflow of groundwater is not expected	strong inflow of groundwater is expected
	water-proof grouting is not required.	water-proof grouting is required.
	•	TriTec

Bukit Timah Granite versus Jurong Formation (Cont'd)

Properties	Bukit Timah Granite	Jurong Formation
In-situ Stress	horizontal to vertical stress ratio is 2 – 3	horizontal to vertical stress ratio is 2.4 - 2.8
	high ratio helps stability of cavern roof and hence affords larger cavern span	high ratio helps stability of cavern roof and hence affords larger cavern span
Degree of Fracturing	massive and more intact (RQD is usually 75 - 100)	bedded and more fractured (RQD is usually 20 - 90)
	intact rock mass results in better overall rock mass quality and lower permeability.	more fractured rock mass results in poorer rock mass quality and higher permeability.
Rock Mass Quality	75% of rock mass is classified as equal or exceeding good quality (Q>=10)	30% of rock mass is classified as equal or exceeding good quality (Q>=10)
	98% of rock mass is classified as equal or exceeding fair (Q>=4)	50% of rock mass is classified as equal or exceeding fair (Q>=4)
	is slightly better than the rock mass quality of the Gjovik Gneiss which hosts the Gjovik Sports Hall. It has a cavern span of 61 m – the world's largest.	TriTor

Bukit Timah Granite versus Jurong Formation (Cont'd)

Properties	Bukit Timah Granite	Jurong Formation
Cavern Dimension	span can be 20 – 40 m with fair rock supports.	span can be 20 – 25 m with fair rock supports.
	span larger than 40 m and up to 75 m may be possible with sites having high horizontal to vertical stress ratios	span larger than 25 m and up to 40 m may be possible with substantial rock support measures in sites having favorable geologic conditions

Distribution and Development

- Distribution: mainly on eastern Singapore Island; much less on northwestern Singapore Island
- Thickness: varies from a few tens of meters to more than 200 meters
- Development: made up of sediments brought down by closely-connected rivers and deposited in a deep basin in eastern Singapore Island
- Age: Late Tertiary to Middle Pleistocene (5 0.5 my)

THECH

Material and Properties

- Materials: dense/cemented muddy sand/gravel with lenses of silt and/or clay.
- Properties: refer to Li, 1999 and Sharma, Chu, and Zhao, 1999 in Geological and Geotechnical Features of Singapore: an Overview *Tunneling and Underground Space Technology, Vol.15, No.4, pp.419 - 431*).

Properties (average values are presented for reference only)

0 – 8m	SPT Blow Count (N) \leq 25
Old	Colour: Yellowish, reddish, or greyish
Alluvium	Composition: Clayey and silty sand, clayey silt
Layer 1	Consistency: Loose to medium dense for sand, medium stiff to very
(OA1)	stiff for clay
	Water Content, w (%) = 22
	Bulk Density, ρ _{bulk} (kN/m³) = 20.3
	Dry Density, ρ _d (kN/m³) = 16.6
	Specific Gravity, G _s = 2.65
	Liquid Limit, w _L (%) = 55
	Plastic Limit, w _P (%) = 23
	Plasticity Index, Pl (%) = 32
	Avg. Undrained Shear Strength, s _u (kPa) = 100
	Cohesion, c' (kPa) = 1.9
	Friction angle, ø' (°) = 36.1
	Horizontal Permeability, k _h (×10 ⁻⁸ m/s) = 18.8
	Compression Index, C _c = 0.2
	Recompression Index, C _r = 0.025
	$E_u/s_u = 40 - 400$, recommended value: ≈ 170

Properties (average values are presented for reference only)

8 – 13 m	SPT Below Count (N) = 26-100
Old	Colour: yellowish brown to light grey or greenish grey
Alluvium	Composition: clayey and silty sand
Layer 2	Consistency: medium dense to very dense for sand; very stiff to
(OA2)	hard for clay
	Water Content, w (%) = 18.2
	Bulk Density, ρ _{bulk} (kN/m³) = 20.7
	Dry Density, $\rho_d (kN/m^3) = 17.6$
	Specific Gravity, Gs = 2.64
	Liquid Limit, wL (%) = 49
	Plastic Limit, wP (%) = 20
	Plasticity Index, PI (%) = 28
	Avg. Undrained Shear Strength, s _u (kPa) = 195
	Cohesion, c' (kPa) = 8.4
	Friction angle, ø' (°) = 35.9
	Horizontal Permeability, k _h (×10 ⁻⁸ m/s) = 6.4
	Compression Index, C _c = 0.1
	Recompression Index, C _r = 0.02
	${\sf E}_{\sf u}/{\sf s}_{\sf u}$ = 40 - 400, recommended value $pprox$ 170

Properties (average values are presented for reference only)

More than	SPT Blow Count (N) >100
13m	Colour: light grey to greenish grey
Old Alluvium	Composition: clayey and silty sand
Layer 3	Consistency: very dense to moderately strong
(OA3)	Water Content, w (%) = 16.3
	Bulk Density, ρ _{bulk} (kN/m³) = 20.3
	Dry Density, ρ _d (kN/m³) = 17.8
	Specific Gravity, Gs = 2.64
	Liquid Limit, wL (%) = 38
	Plastic Limit, wP (%) = 19
	Plasticity Index, PI (%) = 19
	Avg. Undrained Shear Strength, s _u (kPa) = 362
	Cohesion, c' (kPa) = 30.3
	Friction angle, ø' (°) = 35.0
	Horizontal Permeability, k _h (×10 ⁻⁸ m/s) = 3.4
	Compression Index, C _c = 0.07
	Recompression Index, C _r = 0.015
	$E_u/s_u = 40 - 400$, recommended value ≈ 170

Kallang Formation

- **Distribution and Development**
- Distribution: extensively found in river valleys, river mouths, river plains, coastal areas, and the near offshore.

Thickness: up to 80 m

- Development: buried marine clay, beach sand, river sand, organic peaty mud, and coral have been deposited during rising sea levels. They are still being deposited.
- Age: Late Pleistocene to Present (0.14 0 my).

Kallang Formation

Materials

It consists of sediments with marine, alluvial, littoral, and estuarine origins. It includes 5 members.

Marine Member: soft grey clays deposited offshore

Alluvial Member: loose muddy sand and sand deposited in river valleys

Littoral Member: loose muddy sand and sand with shells deposited on coastal beaches

Transitional Member: soft dark grey organic/peaty clay and clayey peat deposited in mangrove areas

Reef Member: loose calcareous sand and corals formed offshore

Singapore Marine Clay

Kallang Formation

Properties of Singapore Marine Clay

Properties: refer to Sharma, Chu, and Zhao, 1999 in Geological and Geotechnical Features of Singapore: an Overview, *Tunneling and Underground Space Technology, Vol.15, No.4, pp.419 - 431*

Other Geological Formations

Gombak Norite

- Distribution: Bukit Gombak, Bukit Panjang, and adjacent hills
- Rocks: norite and gabbro (coarse-grained basic igneous rocks consisting of interlocked calcium-rich plagioclase minerals with pyroxene minerals)
- Properties: high strength and modulus (similar to the properties of Bukit Timah Granite)

Other Geological Formations

Sajahat Formation

Distribution: P. Tekong, P. Sajahat, Punggol.

- Rocks: Well lithified quartzite, quartz sandstone, and argillite
- Age: Lower Paleozoic (540 445 my)

It is the oldest formation in Singapore.

Fort Canning Boulder Bed

Distribution: Central business district, i.e. underlying an area bounded by Fort Canning Park, The Cathay Building, Middle Road and Raffles City.

Rocks: Sandstone or quartzite boulders in hard matrix of sandy clayey silt or sandy silty clay coloured in red, yellow and white.

Age: Late Cretaceous (older than the Old Alluvium but younger than the Jurong Formation)tured sandstone

FORT CANNING BOULDER BED - GEOLOGIC SETTING
Description of Rocks and Soils for Civil Engineering Practice in Singapore

Description of Rocks and Soils for Civil Engineering Practice in Singapore

Geo- Notation	Origin	Description	Geological Formation
В	BEACH	loose muddy sand and sand with some gravel, coral, and shells.	KALLANG (Littoral Member) and TEKONG.
E	ESTUARINE	soft dark grey peaty/organic clay and clayey peat	KALLANG (Transitional Member)
F	FLUVIAL	soft mud, loose muddy sand and sand	KALLANG (Alluvial Member) and TEKONG
F1		granular sediments of silt, sandy silt, silty sand, sand	Bed of Alluvial Member of KALLANG
F2		cohesive sediments of silty clay, sandy clay	Bed of Alluvial Member of KALLANG
М	SHALLOW MARINE	soft blue or grey clay with some shells	KALLANG (Marine Member)

Description of Rocks and Soils for Civil Engineering Practice in Singapore (Cont'd)

Geo- Notation	Origin	Description	Geologic Formation
0	FLUVIAL	dense to cemented muddy sand/gravel with beds of silt and/or clay	OLD ALLUVIUM
FC	COLLUVIAL	hard, unstratified, often red and white coloured silty clay containing many big lens-shaped and rounded fresh boulders.	FORT CANNING BOULDER BED
S	SHALLOW MARINE	red purplish mudstone and sandstone; grey fossil-rich mudstone, fossil-rich shale, and tuff; fossil-rich limestone; coarse sandstone and conglomerate; siltstone and fine sandstone; and muddy sandstone.	JURONG (Queenstown, Jong, Ayer Chawan, Pandan, Rimau, St John, and Tengah Facies)
G	PLUTONIC	Granite, granodiorite, adamellite, diorite	BUKIT TIMAH GRANITE

Weathering Classification of Rocks for Civil Engineering Practice in Singapore

Weathering Classification for Bukit Timah Granite & Gombak Norite

in accordance with Approach 2 in BS Code 5930 Section 6 (1999)

Geo- Notation	Grade / Class	Classification	Basis for assessment
G(1)	Ι	fresh	intact strength unaffected by weathering; not broken easily by hammer; rings when stuck with hammer; no visible discoloration.
G(II)	II	slightly weathered	not broken easily by hammer; rings when stuck with hammer; fresh rock colors generally retained but stained near joint surfaces.
G(III)	III	moderately weathered	cannot be broken by hand but easily broken by hammer; makes a dull or slight ringing sound when stuck with hammer; stained throughout.
G(IV)	IV	highly weathered	core can be broken by hand; does not slake in water; completely discoloured.
G(V)	V	completely weathered	original rock texture preserved; can be crumbled by hand; slakes in water; completely discoloured.
G(VI)	VI	residual soil	original rock structure completely degraded to a soil with none of the original fabric remains; can be crumbled by hand

Weathering of Bukit Timah Granite

Mandai

Weathering Classification for Jurong Formation

in accordance with Approach 2 in BS Code 5930 Section 6 (1999)

Geo- Notation	Grade / Class	Classification	Basis for assessment
S(I)	I	fresh	intact strength unaffected by weathering
S(II)	II	slightly Weathered	slightly weakened with slight discoloration particularly along joints
S(III)	III	moderately weathered	considerably weakened & discolored; larger pieces cannot be broken by hand (RQD generally > 0 but RQD should not be used as the major criterion for assessment)
S(IV)	IV	highly weathered	core can be broken by hand; generally highly to very highly fractured but majority of sample consists of lithorelics (RQD generally is 0 but RQD should not be used as the major guide for assessment). For siltstone, shale, sandstone, quartzite, and conglomerate, the slake test can be used to differentiate between Grade V (slake) and Grade IV (does not slake)
S(V)	V	completely weathered	rock weathered down to soil-like material but bedding still intact; material slakes in water.
S(VI)	VI	residual soil	rock degraded to a soil in which none of the original bedding remains.

Beds of weathered rocks of Jurong Formation at Outram Park

Steeply dipping beds of weathered Jurong Formation rocks at Outram Park

Weathering Classification of Old Alluvium

in accordance with Approach 4 in BS Code 5930 Section 6 (1999)

Geo- Notation	Grade / Class	Classification	Characteristics	Indicative SPT Blows/300mm (not used in isolation)
O(A)	A	unweathered	original strength	> 50 (cannot usually be
O(B)	В	partially weathered	slightly reduced strength	penetrated by CPTs with 20t load capacity)
O(C)	С	distinctly weathered	further weakened	30 - 50
O(D)	D	destructed	greatly weakened often mottled; bedding disturbed	10 - 30
O(E)	E	residual soil	no bedding remains	< 10

Weathered Old Alluvium, Hougang

Updated Geological Maps & Report 2nd Edition, DSTA (2009)

Updated Geological Maps & Report

- Published in 2009 by DSTA
- 6 maps (1:25,000) accompany a report titled 'Geology of Singapore'
- New geologic information on:
 - Pandan Facies
 - Fort Canning Boulder Bed
 - Metamorphism
 - Deposition of the Jurong Formation (an alternative view)
 - Depositional history of the Kallang Formation
 - Recent topography and extent of reclaimed land and coastline
 - Subsurface occurrence of the Pandan Facies and the Fort Canning Boulder Bed illustrated on cross-sections
 - Engineering properties of the major rock types in Singapore
- Purchase:
 - DSTA Office, 71 Science Park Drive, Singapore 118253

