

Dynamic Response and Tunnel Damage from Explosion Loading

Dr Zhou Yingxin Defence Science & Technology Agency Singapore

Presented at the International Symposium on Defence Construction 2002, Singapore

Explosives Storage Safety

- Design must consider accidental explosion (airblast, ground shock, debris, fire)
- Internal Safety
 - Chamber separation
 - Prevention of sympathetic detonation
- External Safety
 - Inhabited buildings
 - Public transport route
 - Workshops

Large-scale Tests for Underground Storage

Collaboration with Swedish Defence Research Agency and Armed Forces HQ

Validation of underground facility design

- Airblast propagation
- Door pressure and response
- Ground shock,
- Debris hazards
- Response of tunnels (at criterion distances)

Layout of Test Facility

Test Facility Layout – 3D View

Considerations in Tunnel Design

- 10-ton explosives charge weight
- Fragment loading (155 mm rounds)
- Repeated blasts (3-4 year programme)
- Safety considerations (need to go into tunnel after test)

Requirements for Tunnel Design

- Rock mass properties (can't take everything for granite!)
- Ground shock prediction
- Tunnel damage criteria (if you know what it means)

Rock Mass Properties

Rock type	Red porphry syenite with grey granitic intrusion
Density	2620 kg/m ³
Uniaxial compressive strength	200-250 MPa
Uniaxial tensile strength (based on point load tests)	12.5 – 17.5 MPa
Rock mass quality	Avg Q value: 15-20

Trängslet KBH 1. Låda 13. Meter 126.48-135.93

tra-0510	KRH (LADA 13	126.46 - 13	
The second se				
		all the second		
	7	द		
State of the second				
C. C.	A DECEMBER OF STREET	· /)·	A	
	R.R.	Q D		
and the second second	and the state			
(. 1. (. 1.		and the second second	A manufacture of the second	
2		X	and the second second	

Ground Shock Prediction

Sources of Ground Shock

Sources	Illustration	Characteristics
Tunnelling /	*	Fully coupled charge
mining – blasting		Low charge weight
	Existing tunnel	Multiple delays
		Repetitive blasting
Conventional		Limited charge weight
weapons –		Fully coupled or contact explosion
penetration bomb		Penetration & Cratering effects
Nuclear weapons	Error F	Largest charge weight (kt or Mt) Large displacement
		Generally indirect-induced shock
Ammo storage –	*	Low probability
accidental		Large charge weight
explosion	Donor chamber	Low loading density

Empirical PPV Equation

 $V = H \left(\frac{R}{\Omega^B} \right)$

H = constant; B = scaling law;

n = attenuation coefficient

Parameters for Coupled Explosions DS

$H = (500/C^{2.17})/(\rho C)$, mm/s

Rock Type	Rock Mass	Seismic Velocity, C,	Initial Value, H (mm /	Attenuation Coefficient,	Attenuation Coefficient,
	Density, ρ, kg/m3	m/s	sec)	n D < 6	n D > 6
Good	> 2600	5100-6000	5000	1.5	1.2
Fair	2300- 2600	4100-5100	4000	1.8	1.5
Poor	< 2300	3500-4100	3000	2.3	1.8

 $D = R/Q^{1/3}$, scaled range, m/kg^{1/3} Conservative estimate for spherical charges

Correction Factors for PPV

- Charge geometry (distributed vs concentrated charge)
- Decoupled explosions (explosives not in full contact with rock)

PPV Correction Factor for Decoupled Explosions

PPV Prediction - Slot Wall

Charge weight	10000 kg
Fully coupled PPV	$5000(R/Q^{1/3})^{-1.5}$ = 5000(14/10000^{1/3})^{-1.5} = 10,760 mm/s
PPV correction for charge geometry	0.6 – 0.8
Decoupling factor	0.116 – 0.23
Predicted PPV for slot wall (incipient)	10,760x0.6x(0.116-0.23) = 748-1,485 mm/s

Ground Shock Curves

Tunnel Damage – What does it mean?

Damage of Unlined Tunnels – a Sample of Definitions

- Slight damage
- Medium damage
- Severe damage
- Intermittent failure
- Local failure
- General failure
- Tight closure
- Blow out

- Incipient swelling
- Incipient damage
- Dislodge of rock section
- Large displacement
- Minor damage
- Damage!

Damage by Earthquakes

Slot wall: PPV = 0.75-1.5 m/s

Calculated PPV and associated damage to underground excavations by earthquakes, Brady, 1991

Damage of Swedish Hard Rock (Persson, 1997)

Tunnel Damage (Li & Huang,1994)

Rock	Rock Parameters			Peak Particle Velocity, mm/s			/s
Туре	Unit Weight (g/cm ³)	Comp. strength (Ppa)	Tensile Strength (MPa)	No Damage	Slight Damage (slight cracking)	Medium Damage (partial collapse)	Serious Damage (large collapse)
Hard	2.6-2.7	75-110	2.1-3.4	270	540	820	1530
Rock	2.7-2.9	110-180	3.4-5.1	310	620	960	1780
	2.72.9	180-200	5.1-5.7	360	720	1110	2090
Soft	2.0-2.5	40-100	1.1-3.1	290	580	900	1670
Rock	2.0-2.5	100-160	3.4-4.5	350	700	1070	1990

1-D Elastic Calculations (Zukas, 1982)

 A saw-tooth wave pulse travelling along a rock bar

$$V_{SP} = \frac{2\sigma_m - \sigma_{DT}}{\rho C} = 2ppv - \frac{\sigma_{DT}}{\rho C}$$
$$\sigma_m = ppv(\rho C)$$

 V_{SP} = velocity of the first spall; s_m = magnitude of incipient stress; σ_{DT} = dynamic tensile strength of rock; ρ = rock mass density, kg/m³; C = seismic wave velocity in rock, m/s.

UET Tests, Sandstone (after Hendron, 1977)

	Cra	nter			Tunnel	<u>R</u>
						A
	Damage Zone	1	2	3	4	
ĺ	Damage	tight	General	Local	Intermitten	
		closure	failure	failure	t failure	
	Free-field radial strain	NA	40	13	3-6	
	Free-field ppv, m/s	NA	12	4	0.9-1.8	
Ì	Calculated thickness of 1st		0.3-1.4	1-4.2	2-18.5	
	spall, m					
ĺ	Calculated number of spalls		11	4	1	

1-D Spall Calculation for UET

Explosive Testing of Tunnel Response (Dowding, 1984)

Туре	Strain%	PPV, m/s
Unlined tunnel:		
Joint movement, fall of loose rock		0.3
Intermittent failure	0.015	2.0
Local failure	0.04	3.6
Complete closure	0.1	
Lined tunnel:		
Cracking of liner	0.02	1.0
Displacement of cracks		1.3
Local failure	0.15	7.4
Complete failure	0.8	40.0

Design of Tunnel Support

- Unlined tunnel can sustain ground shock of PPV = 1.0-2.0 mm/s before damage begins
- Static support design specified fibre-reinforced shotcrete and rock bolts for increased performance against dynamic loads
- Swedish Armed Forces HQ Requirements: all military facilities in rock must use dynamic rock bolts

Swedish Dynamic Rock Bolts Anchor Section 3 3 0.3 FORANKRINGSLÄNGD **Smooth Section** 3 2 5 Plain shotcrete Reinforced shotcrete

LST - Instrumentation

Organisation	Gauge Type	2000	2001	Remarks
FOI	Air Blast – Chamber	3	3	
	Airblast – Tunnel	21	21	
	Airblast – External	8	8	
	Ground Shock	40	40	
	Strain	8	8	
	Temperature	1	12	New - 11
	Smoke puffs	0	0	Consider for future tests
NDCS	Air Blast	11	11	
	Ground Shock	16	16	
	Airblast Induced	0	2	New
	Ground shock			
	Geophones	8	8	
DTRA	Chamber – Pressure	2	2	
	Chamber – Bargauge	2	2	
	Pressure – External	4	8	Stings (4)
	Accelerometer	8	12	
	Radar – Fragment Vel.	1	2	
	Time of Arrival	0	15	New
		133	170	

Ground Shock Gauges

Shotcrete Pannels in Slot Tunnel

TNT Bare Charge (Test #3)

TEST NO.	NEQ (KG)	CHARGE TYPE	OBJECTIVES/ DESCRIPTION
1	10	Bare charge	Ground shock calibration
2	500	Bare charge	Loading density 0.5 kg/m ³
3	10000	Bare charge	Loading density 10 kg/m ³
4a	2500	Bare Charge	Loading density 2.5 kg/m ³
4b	10000	Cased Charge	Cased charge Test Loading density 10 kg/m ³

Vide of Test #3 - 10000 Kg TNT

Chamber

- 10 craters in floor underneath charge
- No rock fall from roof!

Overview of Chamber

Crater

Video Of Slot During Test #3 Technology Agency Barricade Tunnel Adit Old Klotz Group Tunnel Existing Access Tunnel **Slot Tunnel** Debri: Detonation Chamber Slot Tunnel

Slot Tunnel

- No visible damage of tunnel wall
- Slight soil movement on floor

Shotcrete Wall

Slot Tunnel

Barricade

• Lights (and all other fixtures) fully functional after detonation

VERTICAL BOREHOLE

HORIZONTAL BOREHOLE

PPV's from Test #3

Fragment Loading (Test #4b)

Video of Test #4b

Damage in Chamber

- Spalling of shotcrete layer
- Still no rock fall from roof!

Slot Tunnel

- Lights (and fixtures) still fully functional during and after the test
- Damaged shotcrete fell off to floor

Light Fixtures

Comparison of PPV's

Effects of Fragment Loading

ltems	Test #3	Test #4b
Min PPV, m/s	0.94	0.62
Ratio of Min PPV	1.00	0.66
Max PPV, m/s	1.70	1.84
Ratio of Max PPV	1.00	1.09
Average PPV, m/s	1.39	0.98
Ratio of Avg PPV	1.00	0.70
Equivalent TNT	1.00	0.54
Ratio		

Mostly fragments from outer row of rounds were loading the tunnel walls

Computed Seismic Velocity

Test and Charge	Peak Chamber Pressure, MPa	Average PPV on Tunnel Wall, mm/s	Time of Arrival, Ms	Calculated Seismic Velocity, m/s
Test 1 – 10 ton bare TNT	100	1390	3.07	4,636
Test 2 – 2.5 ton bare TNT		622	3.26	4,268
Test 3 – 10 ton TNT (1450 155mm shells)	50	977	3.28	4,294
Ratio of Seismic Velocity after Test 2				0.93

Conclusions

- Fresh rock damage appears to begin at PPV's of 1-2 m/s
- At incipient PPV's of 2-4 m/s, static support with rock bolts and fibre-reinforced shotcrete sufficient for tunnels in competent rock
- For low loading densities (10 kg/m³), tunnels sited at 0.6Q^{1/3} in hard rock can remain fully functional against ground shock loading

Finally,

If in doubt . . .

. . . build in rock

THANK YOU

THANK YOU